Blooms of phytoplankton caused by thinning sea ice in Arctic

by    DiveSSI    26th April 2017
2017_04_02_Green-Ice_01_NASA
Melt ponds darken the surface of thinning Arctic sea ice, creating conditions friendly to algae blooms under the ice. (c) NASA
2017_04_02_Green-Ice_02_NASA
Melt ponds darken the surface of thinning Arctic sea ice, creating conditions friendly to algae blooms under the ice. (c) NASA
2017_04_02_Green-Ice_03_NASA
Melt ponds darken the surface of thinning Arctic sea ice, creating conditions friendly to algae blooms under the ice. (c) NASA

Melt ponds that lower ice's reflectivity another cause

Conditions under the Arctic sea
ice are too dark for photosynthesis to take place, so researchers found
it puzzling that there was a massive bloom of phytoplankton growing
there in 2011. How did it come about?

Phytoplankton forms the basis of the entire Arctic food web. When the
sea ice retreats in the summer, sunlight sparks off a massive bloom of
plankton which attract fish, and subsequently larger predators. In
contrast, when the sea ice is intact, the phytoplankton is not able to
grow under the ice as the ice reflects most of the sunlight back into
space. However, in 2011, a massive bloom of phytoplankton had appeared
under the sea ice in the Chukchi Sea.

Now, using mathematical modelling, researchers from the Harvard John A.
Paulson School of Engineering and Applied Sciences (SEAS) have
discovered that it may be due to the thinning sea ice.

A paper
detailing their discovery has been published in the Science Advances
journal.

In recent decades, the rising temperatures have caused the Arctic ice
to become darker and thinner, allowing more sunlight to reach the water
beneath. Melt ponds – dark pools of water on the surface of the ice –
have also increased in number, lowering the reflectivity of the ice.

“Our big question was, how much
sunlight gets transmitted through the sea ice, both as a function of
thickness, which has been decreasing, and the melt pond percentage,
which has been increasing,” said Christopher Horvat, first author of the paper and graduate student in applied mathematics at SEAS.

“What we found was that we went from
a state where there wasn’t any potential for plankton blooms to massive
regions of the Arctic being susceptible to these types of growth.”

Between the two causes, the larger culprit is the thickness of the ice.
Twenty years ago, only about 3 to 4 percent of the Arctic sea ice was
thin enough to lead to the emergence of large colonies of plankton
beneath it. Today, the percentage has risen to nearly 30 percent in the
summer months.

Horvat said that the metre decline in the Arctic sea ice thickness in
the past 30 years had dramatically altered the area's ecology. “All
of a sudden, our entire idea about how this ecosystem works is
different. The foundation of the Arctic food web is now growing at a
different time and in places that are less accessible to animals that
need oxygen,” he added.

The researchers hope their model would prove helpful in the planning of
future expeditions to observe these blooms and measuring their impact
on ecosystems.

See the study: The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean

Written by
DiveSSI
Date
26th April 2017
Share
COMMENTS
The post has no comments.

Leave a Reply

Your email address will not be published. Required fields are marked *

Also by DiveSSI